Prime graph components of finite groups
نویسندگان
چکیده
منابع مشابه
quasirecognition by prime graph of finite simple groups ${}^2d_n(3)$
let $g$ be a finite group. in [ghasemabadi et al., characterizations of the simple group ${}^2d_n(3)$ by prime graph and spectrum, monatsh math., 2011] it is proved that if $n$ is odd, then ${}^2d _n(3)$ is recognizable by prime graph and also by element orders. in this paper we prove that if $n$ is even, then $d={}^2d_{n}(3)$ is quasirecognizable by prime graph, i.e...
متن کاملFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملSimple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملA Kind of Non-commuting Graph of Finite Groups
Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g and [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...
متن کاملsubgroup intersection graph of finite abelian groups
let $g$ be a finite group with the identity $e$. the subgroup intersection graph $gamma_{si}(g)$ of $g$ is the graph with vertex set $v(gamma_{si}(g)) = g-e$ and two distinct vertices $x$ and $y$ are adjacent in $gamma_{si}(g)$ if and only if $|leftlangle xrightrangle capleftlangle yrightrangle|>1$, where $leftlangle xrightrangle $ is the cyclic subgroup of $g$ generated by $xin g$. in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1981
ISSN: 0021-8693
DOI: 10.1016/0021-8693(81)90218-0